新宝2官网

当前位置:新宝2登陆 > 新宝2官网 > 成功研发出一种具有多离子设计策略的高性能钠离子全电池,水系离子电池的工作电压相对较低新宝2登陆

成功研发出一种具有多离子设计策略的高性能钠离子全电池,水系离子电池的工作电压相对较低新宝2登陆

来源:http://www.reliabid.com 作者:新宝2登陆 时间:2019-12-24 21:31

作为一种能满足规模储能需求的新型电池体系,可充电水系金属离子电池因具有高安全性,低成本和环境友好等优势,近二十年来在能量存储领域引起了较为广泛的关注。但受限于电解液电压窗口较窄、电极材料溶解性等问题,已报道的可用于水体系的电极材料数量依然有限。因此,在开发高性能电池体系的同时,如何扩大电极材料的适用性以满足实际应用需求是目前研究的一个重大挑战。

能反复充放电、效率高和环境适应性强的二次电池是储能技术的重要研究方向。锂离子电池普遍采用有机电解质实现了3V以上的宽电化学窗口,因而比水系离子电池具有更高的能量密度。然而,有机电解质不仅有毒而且易燃,如果使用不恰当,会带来严重的安全及环境问题,制约了锂离子电池在规模储能中的应用。研究者们一直在试图用水系电解质代替有机电解质。相对而言,水系电解质环境友好和安全,且其离子电导率比有机电解质高两个数量级,有望实现电池的高功率,还避免了有机电解质所需的严格制造条件,大大降低了生产成本。因此,水系离子电池在电网级别的大规模储能领域中具有重要应用前景。

近日,中国科学院深圳先进技术研究院集成所功能薄膜材料研究中心研究员唐永炳及其研究团队通过设计思路创新,成功研发出一种具有多离子设计策略的高性能钠离子全电池。相关研究成果A Multi-Ion Strategy towards Rechargeable Sodium-Ion Full Batteries with High Working Voltage and Rate Capability(《多离子设计策略的高电压、高倍率钠离子全电池》)在线发表于国际化学期刊Angewandte Chemie International Edition(DOI: 10.1002/anie.201810575)。

新宝2登陆 1

水系离子电池的工作电压相对较低,因而能量密度难以提高,制约了水系离子电池的发展。围绕这一问题,中国科学院宁波材料技术与工程研究所刘兆平研究团队最近几年开展了新型高电压水系离子电池的探索研究,取得了系列进展。2013年,该研究团队提出“M+/N+混合离子”的新概念构建了两种水系离子电池Na0.44MnO2/TiP2O7和LiMn2O4/Na0.22MnO2(Scientific Reports 2013, 3, 1946)。该类电池工作依赖于双金属离子的迁移,不同于传统的摇椅式金属离子电池只是依赖一种金属离子工作。该概念的提出丰富了二次电池理论,为二次电池发展开辟了新方向。随后,该研究团队沿用此新概念,采用三维框架结构材料为电极正负极材料,发展了工作电压”1.2 V的水系二次电池新体系Ni1Zn1HCF/TiP2O7和Ni1Zn1HCF/NaTi23,并显示出良好的应用前景(新宝2登陆 ,ChemSusChem 2014, 7, 2295)。此外,该研究团队发现菱方相锌铁氰配合物ZnHCF可作为锌离子电池的正极材料,与金属锌负极构建出工作电压为1.7V和能量密度达100 Wh/kg的水系锌离子电池(Advanced Energy Materials 2015, 5, 1400930)。并进一步利用“晶体调控生长”的策略制备了立方、截角和正八面体三种形貌的ZnHCF微米颗粒,揭示了其电化学性能与颗粒形貌有较大关系(Scientific Reports 2015, 5, 18263)。该系列研究结果为发展高电压水系离子电池提供新思维。

在碱金属元素中,钠具有储量丰富、价格低廉等优势。因此,钠离子电池在大规模储能等领域具有广阔的应用前景。然而,钠的标准电极电势(-2.71 V vs. SHE)高于锂(-3.04 V vs. SHE),导致钠离子电池具有较低的工作电压。此外由于钠离子半径较大(Na: 0.98埃 vs. Li: 0.69埃),使得其传输动力学较差,并且易导致较大的电极材料膨胀,从而限制了钠离子电池的倍率和循环性能。

期刊封面

最近,该研究团队采用新型普鲁士蓝化合物InHCF为正极、磷酸钛钠NaTi23和焦磷酸钛TiP2O7为负极、混合碱金属离子水溶液为电解质构建出一系列高电压水系电池。其中,InHCF/NaTi23电池工作电压达1.6 V,能量密度为56 Wh/kg,功率密度超2700 W/kg。为了揭示InHCF中水调控碱金属离子嵌入机制,陈亮和邵和助联合深入进行了理论计算与模拟,发现对于锂/钠离子,水分子可提高其嵌/脱电位并降低其嵌脱反应的动力学,对于钾离子,水分子则不参加嵌脱反应。该研究工作最近发表在Nature Communications 2016, 7, 11982,得到了审稿人的高度评价。该研究工作既对设计高比能电极材料和理解离子嵌入型电极材料的储能机制具有重要理论意义,又为建立实用型水系离子电池奠定了科学基础。

基于上述考虑,唐永炳及其团队成员蒋春磊、方月等人成功研发出一种多离子设计策略(Na+/Li+/PF6-)的新型钠离子全电池。其中正极材料为膨胀石墨,负极采用可以同时与Na和Li发生合金化反应的金属材料,并进行集流体/活性材料一体化设计,同时采用多离子设计的Na+/Li+/PF6-有机电解液。这种多离子设计策略具有两大优势:一方面,利用阴离子插层石墨具有高电势的特点,显著提升了钠离子电池的工作电压;另一方面,多离子设计策略可有效提升电池的反应动力学,并降低金属负极在合金化过程中的体积膨胀,从而大幅改善了倍率性能和循环寿命。研究结果表明,这种策略设计的钠离子电池具有高达~4.0 V的工作电压;同时获得了高达30 C的倍率性能和500圈(容量保持率95%,5 C倍率)的循环寿命。该研究成果为提升钠离子电池电化学性能提供了新的解决思路。

北京大学深圳研究生院新材料学院潘锋教授牵头的清洁能源中心的李锐课题组最近设计了一种具有高工作电压及倍率性能的水系K-Na混合离子电池。该电池由钾基普鲁士蓝(K2FeFe(CN)6)正极材料和碳包覆的磷酸钛钠(NTP/C)负极材料组成,两种电极材料均表现出明显的阳离子选择性——前者在充放电过程中优先脱嵌半径较大的K+,后者则对Na+表现出单一选择性,研究还发现作为负极材料的NTP/C还具有超快的钠离子传导特性。将上述两种具有独特离子选择性通道和快速传输性能的材料组合后得到的混合离子电池表现出了优越的性能,0.5C电流密度下,按正极材料活性物质质量计算,容量可达160mAhg-1。这一电池还表现出可观的倍率性能和循环性能,电流密度高达60C条件下,循环1000圈后仍具有94.3%的保持率。同时,随着工作电压的有效提高,该电池还实现了可与铅酸、镍镉和镍氢电池相媲美的高能量密度—基于活性电极材料总质量达到69.6Whkg-1。与此前基于碱金属(Li/Na/K)的水系混合离子电池性能比较后发现,该电池体系在工作电压、能量密度、倍率性能等多方面均具有较好的表现。此外,这种将具有不同离子选择性的电极材料结合的混合离子电池设计思路也为扩大水系二次离子电池适用性提供了很好的借鉴。

上述研究工作得到了国家自然科学基金青年项目、中科院重点部署项目 (KGZD-EW-T08-2)、浙江省自然科学基金(LY15B030004)和宁波市自然科学基金(2014A610044)的资助。

该项研究得到国家自然科学基金优青项目、中科院STS项目、深圳市科技计划项目等的资助。

新宝2登陆 2

相关链接:1 2 3 4 5

论文链接

混合离子电池倍率性能及原理示意图

新宝2登陆 3

新宝2登陆 4

新宝2登陆 5

图1.水系锌离子电池

锡负极的充放电曲线;Na、Li与Sn发生可逆共合金化反应;阴离子插层石墨具有良好的可逆性;锡负极原位电化学应力测试证明合金化反应过程中具有良好的力学可逆性;Na和Li原子在Sn晶格中的扩散路径和相应的扩散能垒;合金相NaSn和Li2Sn5的态密度图。

本文由新宝2登陆发布于新宝2官网,转载请注明出处:成功研发出一种具有多离子设计策略的高性能钠离子全电池,水系离子电池的工作电压相对较低新宝2登陆

关键词: